These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Oral & Non-Insulin Injectable Medications for Diabetes: Classes, Efficacy, and Clinical Considerations
A wide range of oral and non-insulin injectable medications are available for diabetes management, offering diverse mechanisms, benefits, and safety profiles. These therapies are central to modern diabetes care, especially for type 2 diabetes, and are increasingly used as adjuncts in type 1 diabetes.
Major Classes and Mechanisms
|
Drug Class / Example |
Route |
Key Mechanism & Benefits |
Notable Risks/Considerations |
Citations |
|
Metformin (Biguanide) |
Oral |
↓ hepatic glucose output, ↑ insulin sensitivity |
GI upset, rare lactic acidosis |
(Sibony et al., 2023; Tran et al., 2015; Krentz & Bailey, 2012) |
|
Sulfonylureas |
Oral |
↑ insulin secretion |
Hypoglycemia, weight gain |
(Tran et al., 2015; Krentz & Bailey, 2012) |
|
DPP-4 Inhibitors (e.g., sitagliptin) |
Oral |
↑ incretin effect, moderate HbA1c ↓, weight neutral |
Rare pancreatitis, joint pain |
(Drucker & Nauck, 2006; Tran et al., 2015; Nauck et al., 2017; Krentz & Bailey, 2012) |
|
SGLT2 Inhibitors (e.g., empagliflozin) |
Oral |
↑ urinary glucose excretion, ↓ CV/renal risk |
Genital infections, DKA risk |
(Savarese et al., 2021; Sibony et al., 2023; Van Baar et al., 2018; Brown et al., 2021; Palmer et al., 2021) |
|
Thiazolidinediones (e.g., pioglitazone) |
Oral |
↑ insulin sensitivity |
Weight gain, edema, fracture risk |
(Tran et al., 2015; Krentz & Bailey, 2012) |
|
GLP-1 Receptor Agonists (e.g., semaglutide, liraglutide) |
Injectable/Oral |
↑ insulin, ↓ glucagon, ↓ appetite, weight loss, CV benefit |
GI side effects, rare pancreatitis |
(Nauck et al., 2020; Yao et al., 2024; Sibony et al., 2023; Drucker & Nauck, 2006; Edwards et al., 2022; Fadini et al., 2024; Nauck et al., 2017; Brown et al., 2021; Palmer et al., 2021) |
|
GIP/GLP-1 Dual Agonists (e.g., tirzepatide) |
Injectable |
Potent HbA1c and weight reduction |
GI side effects |
(Yao et al., 2024; Sibony et al., 2023) |
|
Amylin analogs (e.g., pramlintide) |
Injectable |
↓ gastric emptying, ↓ glucagon, ↓ appetite |
Hypoglycemia (with insulin), nausea |
(Nabi-Afjadi et al., 2024) |
|
Alpha-glucosidase inhibitors |
Oral |
↓ carbohydrate absorption |
GI side effects |
(Tran et al., 2015; Krentz & Bailey, 2012) |
Figure 1: Summary of oral and non-insulin injectable diabetes medications, mechanisms, and risks.
Efficacy and Clinical Outcomes
Special Populations and Adjunctive Use
Safety and Tolerability
Summary
Oral and non-insulin injectable medications provide effective, individualized options for diabetes management, with GLP-1 RAs and SGLT2 inhibitors offering the greatest benefits for glycemic control, weight loss, and cardiorenal protection. Drug choice should be tailored to patient comorbidities, preferences, and risk profiles (Nauck et al., 2020; Yao et al., 2024; Savarese et al., 2021; Sibony et al., 2023; Drucker & Nauck, 2006; Edwards et al., 2022; Tran et al., 2015; Van Baar et al., 2018; Fadini et al., 2024; Nauck et al., 2017; Brown et al., 2021; Krentz & Bailey, 2012; Palmer et al., 2021).
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Nauck, M., Quast, D., Wefers, J., & Meier, J. (2020). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46. https://doi.org/10.1016/j.molmet.2020.101102
Yao, H., Zhang, A., Li, D., Wu, Y., Wang, C., Wan, J., & Yuan, C. (2024). Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis. The BMJ, 384. https://doi.org/10.1136/bmj-2023-076410
Savarese, G., Butler, J., Lund, L., Bhatt, D., & Anker, S. (2021). CARDIOVASCULAR EFFECTS OF NON-INSULIN GLUCOSE-LOWERING AGENTS: A COMPREHENSIVE REVIEW OF TRIAL EVIDENCE AND POTENTIAL CARDIOPROTECTIVE MECHANISMS.. Cardiovascular research. https://doi.org/10.1093/cvr/cvab271
Sibony, R., Segev, O., Dor, S., & Raz, I. (2023). Drug Therapies for Diabetes. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms242417147
Drucker, D., & Nauck, M. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet, 368, 1696-1705. https://doi.org/10.1016/s0140-6736(06)69705-5
Nabi-Afjadi, M., Ostadhadi, S., Liaghat, M., Pasupulla, A., Masoumi, S., Aziziyan, F., Zalpoor, H., Abkhooie, L., & Tarhriz, V. (2024). Revolutionizing type 1 diabetes management: Exploring oral insulin and adjunctive treatments.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 176, 116808. https://doi.org/10.1016/j.biopha.2024.116808
Edwards, K., Li, X., & Lingvay, I. (2022). Clinical and Safety Outcomes with GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 1 Diabetes: A Real-World Study.. The Journal of clinical endocrinology and metabolism. https://doi.org/10.1210/clinem/dgac618
Tran, L., Zielinski, A., Roach, A., Jende, J., Householder, A., Cole, E., Atway, S., Amornyard, M., Accursi, M., Shieh, S., & Thompson, E. (2015). Pharmacologic Treatment of Type 2 Diabetes. Annals of Pharmacotherapy, 49, 540 - 556. https://doi.org/10.1177/1060028014558289
Van Baar, M., Van Ruiten, C., Muskiet, M., Van Bloemendaal, L., IJzerman, R., & Van Raalte, D. (2018). SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management. Diabetes Care, 41, 1543 - 1556. https://doi.org/10.2337/dc18-0588
Fadini, G., Bonora, B., Ghiani, M., Anichini, R., Melchionda, E., Fattor, B., Fazion, S., Meregalli, G., Giaccari, A., Avogaro, A., & Consoli, A. (2024). Oral or injectable semaglutide for the management of type 2 diabetes in routine care: A multicentre observational study comparing matched cohorts. Diabetes, 26, 2390 - 2400. https://doi.org/10.1111/dom.15554
Nauck, M., Meier, J., Cavender, M., Aziz, M., & Drucker, D. (2017). Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation, 136, 849–870. https://doi.org/10.1161/circulationaha.117.028136
Brown, E., Heerspink, H., Cuthbertson, D., & Wilding, J. (2021). SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. The Lancet, 398, 262-276. https://doi.org/10.1016/s0140-6736(21)00536-5
Krentz, A., & Bailey, C. (2012). Oral Antidiabetic Agents. Drugs, 65, 385-411. https://doi.org/10.2165/00003495-200565030-00005
Palmer, S., Tendal, B., Mustafa, R., et al. (2021). Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. The BMJ, 372. https://doi.org/10.1136/bmj.m4573
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Insulin: Uses, Mechanisms of Action, and Clinical Advances
Insulin is a vital hormone for glucose regulation and a cornerstone of diabetes therapy. Its clinical use, molecular actions, and evolving formulations have transformed diabetes management for nearly a century.
Physiological Role and Mechanism of Action
Clinical Uses of Insulin
Types and Formulations
Advances and Challenges
Types of Insulin and Their Clinical Features
|
Insulin Type |
Onset/Duration |
Main Use |
Key Features/Advances |
Citations |
|
Rapid-acting analogs |
10–30 min / 3–5 hrs |
Mealtime glucose control |
Closest to physiological spike |
(Owens & Bolli, 2020; De Block et al., 2022; Home, 2012; Tibaldi, 2014; Heise et al., 2022) |
|
Long-acting analogs |
1–2 hrs / 24+ hrs |
Basal/background coverage |
Less hypoglycemia, stable PK/PD |
(Heise & Mathieu, 2016; Tibaldi, 2014; Owens & Bolli, 2008) |
|
Premixed/concentrated |
Varies |
Simplified regimens, high doses |
Fewer injections, severe resistance |
(Tibaldi, 2014; Sims et al., 2021) |
|
Novel forms |
Varies |
Improved convenience |
Inhaled, oral, once-weekly |
(Sims et al., 2021; Cahn et al., 2015) |
Figure 1: Comparison of insulin types, uses, and clinical features.
Summary
Insulin remains central to diabetes care, with ongoing innovations in formulation and delivery enhancing its ability to mimic natural physiology, improve outcomes, and reduce side effects. Its actions extend beyond glucose control, influencing multiple organ systems and disease processes.
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Apostolopoulou, M., Lambadiari, V., Roden, M., & Dimitriadis, G. (2025). Insulin Resistance in Type 1 Diabetes: Pathophysiological, Clinical, and Therapeutic Relevance. Endocrine Reviews, 46, 317 - 348. https://doi.org/10.1210/endrev/bnae032
Heise, T., & Mathieu, C. (2016). Impact of the mode of protraction of basal insulin therapies on their pharmacokinetic and pharmacodynamic properties and resulting clinical outcomes. Diabetes, Obesity & Metabolism, 19, 3 - 12. https://doi.org/10.1111/dom.12782
Owens, D., & Bolli, G. (2020). The continuing quest for better subcutaneously administered prandial insulins: a review of recent developments and potential clinical implications. Diabetes, Obesity & Metabolism, 22, 743 - 754. https://doi.org/10.1111/dom.13963
De Block, C., Van Cauwenberghe, J., Bochanen, N., & Dirinck, E. (2022). Rapid-Acting Insulin Analogues: Theory and Best Clinical Practice in Type 1 and Type 2 Diabetes. Diabetes, obesity & metabolism. https://doi.org/10.1111/dom.14713
Petersen, M., & Shulman, G. (2018). Mechanisms of Insulin Action and Insulin Resistance. Physiological reviews, 98 4, 2133-2223. https://doi.org/10.1152/physrev.00063.2017
Home, P. (2012). The pharmacokinetics and pharmacodynamics of rapid‐acting insulin analogues and their clinical consequences. Diabetes, 14. https://doi.org/10.1111/j.1463-1326.2012.01580.x
Tibaldi, J. (2014). Evolution of insulin: from human to analog. The American journal of medicine, 127 10 Suppl, S25-38. https://doi.org/10.1016/j.amjmed.2014.07.005
Hirsch, I., Juneja, R., Beals, J., Antalis, C., & Wright, E. (2020). The Evolution of Insulin and How it Informs Therapy and Treatment Choices. Endocrine Reviews, 41, 733 - 755. https://doi.org/10.1210/endrev/bnaa015
White, M., & Kahn, C. (2021). Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 52. https://doi.org/10.1016/j.molmet.2021.101304
Sims, E., Carr, A., Oram, R., Dimeglio, L., & Evans-Molina, C. (2021). 100 years of insulin: celebrating the past, present and future of diabetes therapy. Nature Medicine, 27, 1154 - 1164. https://doi.org/10.1038/s41591-021-01418-2
Mathieu, C., Martens, P., & Vangoitsenhoven, R. (2021). One hundred years of insulin therapy. Nature Reviews Endocrinology, 17, 715 - 725. https://doi.org/10.1038/s41574-021-00542-w
Rafi, E., Tranchito, L., & Hatipoglu, B. (2025). Navigating Insulin Options for Diabetes Management. The Journal of clinical endocrinology and metabolism, 110 Supplement_2, S159-S164. https://doi.org/10.1210/clinem/dgae790
Rahman, M., Hossain, K., Das, S., Kundu, S., Adegoke, E., Rahman, M., Hannan, M., Uddin, M., & Pang, M. (2021). Role of Insulin in Health and Disease: An Update. International Journal of Molecular Sciences, 22. https://doi.org/10.3390/ijms22126403
Heise, T., De Oliveira, C., Juneja, R., Ribeiro, A., Chigutsa, F., & Blevins, T. (2022). What is the value of faster acting prandial insulin? Focus on ultra rapid lispro. Diabetes, Obesity & Metabolism, 24, 1689 - 1701. https://doi.org/10.1111/dom.14773
Cahn, A., Miccoli, R., Dardano, A., & Del Prato, S. (2015). New forms of insulin and insulin therapies for the treatment of type 2 diabetes.. The lancet. Diabetes & endocrinology, 3 8, 638-52. https://doi.org/10.1016/s2213-8587(15)00097-2
Owens, D., & Bolli, G. (2008). Beyond the era of NPH insulin--long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application. Diabetes technology & therapeutics, 10 5, 333-49. https://doi.org/10.1089/dia.2008.0023
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Insulin Plans for Diabetic Patients: Principles, Regimens, and Personalization
Developing an effective insulin plan for diabetic patients requires individualization based on diabetes type, blood glucose patterns, lifestyle, comorbidities, and patient preferences. Research consistently emphasizes the need for tailored regimens, careful titration, and ongoing adjustment to optimize glycemic control and minimize risks.
Principles of Insulin Planning
Common Insulin Regimens
|
Regimen Type |
Components & Timing |
Key Features/Indications |
Citations |
|
Basal-only |
Long-acting insulin once/twice daily |
Simpler, often first step in T2D |
(Mooradian et al., 2006; Lasserson et al., 2009; Fritsche et al., 2003; Sugumar et al., 2022) |
|
Basal-bolus |
Basal + rapid-acting before meals |
Closest to physiologic, flexible, T1D/T2D |
(Mooradian et al., 2006; De Block et al., 2022; Rafi et al., 2025; Dodek et al., 2024; Lasserson et al., 2009; Carr et al., 2022; Sugumar et al., 2022) |
|
Premixed |
Fixed-ratio basal/bolus, 1–2x daily |
Simpler, less flexible, T2D |
(Mooradian et al., 2006; Lasserson et al., 2009; Fritsche et al., 2003; Sugumar et al., 2022) |
|
Advanced/AI-guided |
Algorithmic or digital titration |
Personalized, may improve outcomes |
(Wang et al., 2023; Shifrin & Siegelmann, 2020; Kerr et al., 2022) |
Figure 1: Comparison of insulin regimens and their clinical features.
Titration and Monitoring
Special Populations and Considerations
Summary
An optimal insulin plan is highly individualized, combining the right insulin types, dosing schedules, and titration strategies to match each patient’s needs. Ongoing monitoring, patient education, and the use of new technologies are key to achieving safe and effective glycemic control (Mooradian et al., 2006; De Block et al., 2022; Rafi et al., 2025; Wang et al., 2023; Shifrin & Siegelmann, 2020; Moghissi & King, 2014; Pasquel et al., 2021; Valent & Barbour, 2024; Lasserson et al., 2009; Korytkowski et al., 2022; Home et al., 2014; Kerr et al., 2022; Fritsche et al., 2003; Carr et al., 2022; Sugumar et al., 2022; Cahn et al., 2015).
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Mooradian, A., Bernbaum, M., & Albert, S. (2006). Narrative Review: A Rational Approach to Starting Insulin Therapy. Annals of Internal Medicine, 145, 125-134. https://doi.org/10.7326/0003-4819-145-2-200607180-00010
Petersen, J., Juul, S., Kamp, C., Faltermeier, P., Sillassen, C., Santos, T., & Jakobsen, J. (2025). Regular human insulins versus rapid-acting insulin analogues in children and adolescents with type 1 diabetes: a protocol for a systematic review with meta-analysis and Trial Sequential Analysis. Systematic Reviews, 14. https://doi.org/10.1186/s13643-024-02729-4
De Block, C., Van Cauwenberghe, J., Bochanen, N., & Dirinck, E. (2022). Rapid-Acting Insulin Analogues: Theory and Best Clinical Practice in Type 1 and Type 2 Diabetes. Diabetes, obesity & metabolism. https://doi.org/10.1111/dom.14713
Rafi, E., Tranchito, L., & Hatipoglu, B. (2025). Navigating Insulin Options for Diabetes Management. The Journal of clinical endocrinology and metabolism, 110 Supplement_2, S159-S164. https://doi.org/10.1210/clinem/dgae790
Wang, G., Liu, X., Ying, Z., Yang, G., Chen, Z., Liu, Z., Zhang, M., Yan, H., Lu, Y., Gao, Y., Xue, K., Li, X., & Chen, Y. (2023). Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nature Medicine, 29, 2633 - 2642. https://doi.org/10.1038/s41591-023-02552-9
Shifrin, M., & Siegelmann, H. (2020). Near-optimal insulin treatment for diabetes patients: A machine learning approach. Artificial intelligence in medicine, 107, 101917. https://doi.org/10.1016/j.artmed.2020.101917
Dodek, M., Miklovičová, E., & Halás, M. (2024). Improving the insulin therapy for diabetic patients using optimal impulsive disturbance rejection: Continuous time approach. Biocybernetics and Biomedical Engineering. https://doi.org/10.1016/j.bbe.2024.05.003
Moghissi, E., & King, A. (2014). Individualizing insulin therapy in the management of type 2 diabetes. The American journal of medicine, 127 10 Suppl, S3-10. https://doi.org/10.1016/j.amjmed.2014.07.002
Pasquel, F., Lansang, M., Dhatariya, K., & Umpierrez, G. (2021). Management of diabetes and hyperglycaemia in the hospital. The lancet. Diabetes & endocrinology. https://doi.org/10.1016/s2213-8587(20)30381-8
Valent, A., & Barbour, L. (2024). Insulin Management for Gestational and Type 2 Diabetes in Pregnancy. Obstetrics & Gynecology, 144, 633 - 647. https://doi.org/10.1097/aog.0000000000005640
Lasserson, D., Glasziou, P., Perera, R., Holman, R., & Farmer, A. (2009). Optimal insulin regimens in type 2 diabetes mellitus: systematic review and meta-analyses. Diabetologia, 52, 1990-2000. https://doi.org/10.1007/s00125-009-1468-7
Korytkowski, M., Muniyappa, R., Antinori-Lent, K., Donihi, A., Drincic, A., Hirsch, I., Luger, A., McDonnell, M., Murad, M., Nielsen, C., Pegg, C., Rushakoff, R., Santesso, N., & Umpierrez, G. (2022). Management of Hyperglycemia in Hospitalized Adult Patients in Non-Critical Care Settings: An Endocrine Society Clinical Practice Guideline. The Journal of clinical endocrinology and metabolism. https://doi.org/10.1210/clinem/dgac278
Home, P., Riddle, M., Cefalu, W., Bailey, C., Bretzel, R., Del Prato, S., Leroith, D., Schernthaner, G., Van Gaal, L., & Raz, I. (2014). Insulin Therapy in People With Type 2 Diabetes: Opportunities and Challenges? Diabetes Care, 37, 1499 - 1508. https://doi.org/10.2337/dc13-2743
Kerr, D., Edelman, S., Vespasiani, G., & Khunti, K. (2022). New digital health technologies for insulin initiation and optimization for people with type 2 diabetes.. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. https://doi.org/10.1016/j.eprac.2022.04.006
Fritsche, A., Schweitzer, M., & Hring, H. (2003). Glimepiride Combined with Morning Insulin Glargine, Bedtime Neutral Protamine Hagedorn Insulin, or Bedtime Insulin Glargine in Patients with Type 2 Diabetes. Annals of Internal Medicine, 138, 952-959. https://doi.org/10.7326/0003-4819-138-12-200306170-00006
Carr, A., Evans-Molina, C., & Oram, R. (2022). Precision medicine in type 1 diabetes. Diabetologia, 65, 1854 - 1866. https://doi.org/10.1007/s00125-022-05778-3
Sugumar, V., Ang, K., Alshanon, A., Sethi, G., Yong, P., Looi, C., & Wong, W. (2022). A Comprehensive Review of the Evolution of Insulin Development and Its Delivery Method. Pharmaceutics, 14. https://doi.org/10.3390/pharmaceutics14071406
Cahn, A., Miccoli, R., Dardano, A., & Del Prato, S. (2015). New forms of insulin and insulin therapies for the treatment of type 2 diabetes. The lancet. Diabetes & endocrinology, 3 8, 638-52. https://doi.org/10.1016/s2213-8587(15)00097-2
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Screening for Type 1 Diabetes: Methods, Benefits, and Evolving Strategies
Screening for type 1 diabetes (T1DM) is rapidly advancing, with growing evidence supporting early detection through islet autoantibody and genetic testing. Early identification of presymptomatic T1DM can reduce diabetic ketoacidosis (DKA) at diagnosis, enable timely intervention, and potentially delay disease progression.
Screening Methods and Strategies
Benefits and Clinical Impact
Implementation and Challenges
Screening Approaches and Outcomes in T1DM
|
Screening Method |
Target Population |
Sensitivity/PPV |
Key Benefits |
Citations |
|
Islet autoantibody (2x) |
Children (2 & 6 yrs) |
82%/79% |
Early detection, DKA↓ |
(Ghalwash et al., 2022; Ghalwash et al., 2023) |
|
Islet autoantibody (1x) |
Adolescents (10 yrs) |
90%/66% |
Efficient, high yield |
(Ghalwash et al., 2023) |
|
Genetic pre-screening |
High-risk/General |
Context-dependent |
Targets high-risk, equity? |
(Bonifacio et al., 2025; Mendizabal et al., 2024; Guertin et al., 2024; Qu et al., 2022) |
|
Combined risk score |
High-risk children |
AUC ≥0.9 |
Improved prediction |
(Ferrat et al., 2020) |
Figure 1: Comparison of T1DM screening methods, populations, and outcomes.
Summary
Screening for T1DM using islet autoantibody and genetic testing is effective for early detection, reducing DKA, and enabling preventive interventions. Ongoing research is refining strategies for broader, cost-effective, and equitable implementation (Hoffmann et al., 2025; Bonifacio & Ziegler, 2025; Bonifacio et al., 2025; Leichter et al., 2025; Ghalwash et al., 2022; Sims et al., 2022; Phillip et al., 2024; Mallone et al., 2024; Guertin et al., 2024; Sundheim et al., 2025; Ghalwash et al., 2023; Ferrat et al., 2020; Qu et al., 2022; McQueen et al., 2020).
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Hoffmann, L., Kohls, M., Arnolds, S., et al. (2025). EDENT1FI Master Protocol for screening of presymptomatic early-stage type 1 diabetes in children and adolescents. BMJ Open, 15. https://doi.org/10.1136/bmjopen-2024-088522
Bonifacio, E., & Ziegler, A. (2025). Type 1 diabetes risk factors, risk prediction and presymptomatic detection: Evidence and guidance for screening. Diabetes, Obesity & Metabolism, 27, 28 - 39. https://doi.org/10.1111/dom.16354
Bonifacio, E., Coelho, R., Ewald, D., Gemulla, G., Hubmann, M., Jarosz-Chobot, P., Kohls, M., Kordonouri, O., Lampasona, V., Narendran, P., Pociot, F., Šumník, Z., Szypowska, A., Zapardiel-Gonzalo, J., & Ziegler, A. (2025). The efficacy of islet autoantibody screening with or without genetic pre-screening strategies for the identification of presymptomatic type 1 diabetes. Diabetologia, 68, 1101 - 1107. https://doi.org/10.1007/s00125-025-06408-4
Leichter, S., Felton, J., Rasmussen, C., Rizzuto, P., Bellini, N., Ebekozien, O., & Schulman-Rosenbaum, R. (2025). Establishing Screening Programs for Presymptomatic Type 1 Diabetes: Practical Guidance for Diabetes Care Providers. The Journal of Clinical Endocrinology and Metabolism, 110, 2371 - 2382. https://doi.org/10.1210/clinem/dgaf194
Mendizabal, L., Saso-Jiménez, L., Apaolaza, N., Martínez, R., Zulueta, M., Urrutia, I., Simón, L., & Castano, L. (2024). 2002-LB: New Model for Type 1 Diabetes Differential Screening. Diabetes. https://doi.org/10.2337/db24-2002-lb
Ghalwash, M., Dunne, J., Lundgren, M., Rewers, M., Ziegler, A., Anand, V., Toppari, J., Veijola, R., & Hagopian, W. (2022). Two-age islet-autoantibody screening for childhood type 1 diabetes: a prospective cohort study.. The lancet. Diabetes & endocrinology. https://doi.org/10.1016/s2213-8587(22)00141-3
Sims, E., Besser, R., Dayan, C., et al. (2022). Screening for Type 1 Diabetes in the General Population: A Status Report and Perspective.. Diabetes, 71 4, 610-623. https://doi.org/10.2337/dbi20-0054
Phillip, M., Achenbach, P., Addala, A., et al. (2024). Consensus guidance for monitoring individuals with islet autoantibody-positive pre-stage 3 type 1 diabetes. Diabetologia, 67, 1731 - 1759. https://doi.org/10.1007/s00125-024-06205-5
Simmons, K., & Sims, E. (2023). Screening and prevention of type 1 diabetes: Where are we?. The Journal of clinical endocrinology and metabolism. https://doi.org/10.1210/clinem/dgad328
Mallone, R., Bismuth, E., Thivolet, C., Benhamou, P., Hoffmeister, N., Collet, F., Nicolino, M., Reynaud, R., & Beltrand, J. (2024). Screening and care for preclinical stage 1-2 type 1 diabetes in first-degree relatives: French expert position statement. Diabetes & metabolism, 101603. https://doi.org/10.1016/j.diabet.2024.101603
Guertin, K., Repaske, D., Taylor, J., Williams, E., Onengut-Gumuscu, S., Chen, W., Boggs, S., Yu, L., Allen, L., Botteon, L., Daniel, L., Keating, K., Labergerie, M., Lienhart, T., Gonzalez-Mejia, J., Starnowski, M., & Rich, S. (2024). Implementation of type 1 diabetes genetic risk screening in children in diverse communities: the Virginia PrIMeD project. Genome Medicine, 16. https://doi.org/10.1186/s13073-024-01305-8
Sundheim, B., Hirani, K., Blaschke, M., Lemos, J., & Mittal, R. (2025). Pre-Type 1 Diabetes in Adolescents and Teens: Screening, Nutritional Interventions, Beta-Cell Preservation, and Psychosocial Impacts. Journal of Clinical Medicine, 14. https://doi.org/10.3390/jcm14020383
Ghalwash, M., Anand, V., Lou, O., Martin, F., Rewers, M., Ziegler, A., Toppari, J., Hagopian, W., & Veijola, R. (2023). Islet autoantibody screening in at-risk adolescents to predict type 1 diabetes until young adulthood: a prospective cohort study. The Lancet. Child & adolescent health. https://doi.org/10.1016/s2352-4642(22)00350-9
Ferrat, L., Vehik, K., Sharp, S., et al. (2020). Author Correction: A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nature Medicine, 28, 599 - 599. https://doi.org/10.1038/s41591-020-0930-4
Qu, H., Qu, J., Glessner, J., Liu, Y., Mentch, F., Chang, X., March, M., Li, J., Roizen, J., Connolly, J., Sleiman, P., & Hakonarson, H. (2022). Improved genetic risk scoring algorithm for type 1 diabetes prediction. Pediatric Diabetes, 23, 320 - 323. https://doi.org/10.1111/pedi.13310
McQueen, R., Geno, C., Waugh, K., Frohnert, B., Steck, A., Yu, L., Baxter, J., & Rewers, M. (2020). Cost and Cost-effectiveness of Large-scale Screening for Type 1 Diabetes in Colorado. Diabetes Care, 43, 1496 - 1503. https://doi.org/10.2337/dc19-2003
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Diabetes in Special Needs Populations: Risks, Management, and Research Gaps
Diabetes disproportionately affects individuals with intellectual, developmental, and cognitive disabilities, presenting unique challenges in prevention, management, and health outcomes. Research highlights higher prevalence, increased risk of complications, and the need for tailored interventions in these populations.
Prevalence and Risk Factors
Management Challenges
Health Disparities and Policy
Intervention and Program Outcomes
|
Population/Intervention |
Key Findings/Outcomes |
Citations |
|
Adults with learning disability (RCT) |
Supported self-management feasible, positive participant experience |
(House et al., 2018) |
|
Older adults with diabetes & frailty |
Multidisciplinary intervention improved cognition, frailty, mood, HbA1c |
(Shaji et al., 2025) |
|
Pediatric IDD |
Higher odds of obesity, hypertension, diabetes, dyslipidemia |
(Nolan et al., 2024) |
|
Adults with IDD (day program) |
Improved healthy eating, knowledge, water intake; weight unchanged |
(Nabors et al., 2024) |
|
Neurodevelopmental disorders (T1D) |
Poorer glycemic control, higher risk of complications |
(Liu et al., 2021) |
|
Antipsychotic use in IDD |
Increased risk of metabolic adverse effects, including diabetes |
(Smith et al., 2022) |
Figure 1: Summary of interventions and outcomes in special needs diabetes populations.
Summary
Special needs populations with diabetes face higher risks and unique management challenges. Effective care requires individualized, multidisciplinary approaches, caregiver involvement, and policy changes to address disparities and support holistic health.
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
House, A., Bryant, L., Russell, A., Wright-Hughes, A., Graham, L., Walwyn, R., Wright, J., Hulme, C., O’Dwyer, J., Latchford, G., Meer, S., Birtwistle, J., Stansfield, A., Ajjan, R., & Farrin, A. (2018). Managing with Learning Disability and Diabetes: OK-Diabetes - a case-finding study and feasibility randomised controlled trial.. Health technology assessment, 22 26, 1-328. https://doi.org/10.3310/hta22260
Shaji, S., Radhakrishnan, C., & P, S. (2025). 626-P: Diab@ease—A Pilot Study on Holistic Mental Health Integration for Diabetes, Cognitive Function, and Physical Frailty. Diabetes. https://doi.org/10.2337/db25-626-p
Liu, S., Kuja-Halkola, R., Larsson, H., Lichtenstein, P., Ludvigsson, J., Svensson, A., Gudbjörnsdottir, S., Tideman, M., Serlachius, E., & Butwicka, A. (2021). Neurodevelopmental Disorders, Glycemic Control, and Diabetic Complications in Type 1 Diabetes: a Nationwide Cohort Study. The Journal of Clinical Endocrinology and Metabolism, 106, e4459 - e4470. https://doi.org/10.1210/clinem/dgab467
Munshi, M. (2017). Cognitive Dysfunction in Older Adults With Diabetes: What a Clinician Needs to Know. Diabetes Care, 40, 461 - 467. https://doi.org/10.2337/dc16-1229
Nolan, M., Asche, S., Barton, K., Benziger, C., Ekstrom, H., Essien, I., O'Connor, P., Allen, C., Freitag, L., & Kharbanda, E. (2024). Cardiometabolic Risk in Pediatric Patients with Intellectual and Developmental Disabilities.. American journal of preventive medicine. https://doi.org/10.1016/j.amepre.2024.11.013
Srikanth, V., Sinclair, A., Hill-Briggs, F., Moran, C., & Biessels, G. (2020). Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities.. The lancet. Diabetes & endocrinology, 8 6, 535-545. https://doi.org/10.1016/s2213-8587(20)30118-2
Pham, H., Benevides, T., Andresen, M., et al.(2024). Advancing Health Policy and Outcomes for People With Intellectual or Developmental Disabilities: A Community-Led Agenda.. JAMA health forum, 5 8, e242201. https://doi.org/10.1001/jamahealthforum.2024.2201
Biessels, G., & Whitmer, R. (2019). Cognitive dysfunction in diabetes: how to implement emerging guidelines. Diabetologia, 63, 3 - 9. https://doi.org/10.1007/s00125-019-04977-9
Nabors, L., Bauer, A., Ayers, K., Workman, B., Kovacic, M., & Lee, S. (2024). A Short-Term Evaluation of the Eat and Exercise to Win Program for Adults with Intellectual and Developmental Disabilities. Nutrients, 16. https://doi.org/10.3390/nu16183124
Cuevas, H., Stuifbergen, A., Hilsabeck, R., Sales, A., Wood, S., & Kim, J. (2023). The role of cognitive rehabilitation in people with type 2 diabetes: A study protocol for a randomized controlled trial. PLOS ONE, 18. https://doi.org/10.1371/journal.pone.0285553
Chen, S., Zhao, S., Dalman, C., Karlsson, H., & Gardner, R. (2020). Association of maternal diabetes with neurodevelopmental disorders: autism spectrum disorders, attention-deficit/hyperactivity disorder and intellectual disability. International Journal of Epidemiology, 50, 459 - 474. https://doi.org/10.1093/ije/dyaa212
Zheng, Y., Rice, B., Wylie-Rosett, J., & Wu, B. (2024). A Scoping Review of Non‐pharmacological Interventions for Adults with Cognitive Impairment and Diabetes. Alzheimer's & Dementia, 20. https://doi.org/10.1002/alz.088488
Koekkoek, P., Kappelle, L., Berg, E., Rutten, G., & Biessels, G. (2015). Cognitive function in patients with diabetes mellitus: guidance for daily care. The Lancet Neurology, 14, 329-340. https://doi.org/10.1016/s1474-4422(14)70249-2
Smith, E., Stogios, N., Au, E., Maksyutynska, K., De, R., Ji, A., Sørensen, M., St. John, L., Lin, H., Desarkar, P., Lunsky, Y., Remington, G., Hahn, M., & Agarwal, S. (2022). The metabolic adverse effects of antipsychotic use in individuals with intellectual and/or developmental disability: A systematic review and meta‐analysis. Acta Psychiatrica Scandinavica, 146, 201 - 214. https://doi.org/10.1111/acps.13484
Rubenstein, E., Ehrenthal, D., Mallinson, D., Bishop, L., Kuo, H., & Durkin, M. (2020). Pregnancy complications and maternal birth outcomes in women with intellectual and developmental disabilities in Wisconsin Medicaid. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0241298
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
Diabetes Emergencies: Types, Risks, and Management
Diabetes emergencies are acute, life-threatening complications requiring rapid recognition and intervention. The most common are diabetic ketoacidosis (DKA), hyperglycemic hyperosmolar state (HHS), and severe hypoglycemia. These emergencies can occur in both type 1 and type 2 diabetes and are associated with significant morbidity, mortality, and healthcare costs.
Major Types of Diabetes Emergencies
|
Emergency Type |
Key Features & Diagnostic Criteria |
Mortality Risk |
Common Triggers |
Citations |
|
Diabetic Ketoacidosis (DKA) |
Hyperglycemia, metabolic acidosis, ketonemia; often in T1DM but also T2DM |
<1–5% (adults/children) |
Infection, missed insulin, new-onset diabetes |
(Umpierrez & Korytkowski, 2016; French et al., 2019; Dhatariya et al., 2020; Kitabchi et al., 2004; Kitabchi et al., 2006; Kitabchi et al., 2001; Kitabchi et al., 2009; Virdi et al., 2023) |
|
Hyperglycemic Hyperosmolar State (HHS) |
Severe hyperglycemia, high osmolality, dehydration, minimal ketosis; more common in T2DM |
10–20% (higher than DKA) |
Infection, dehydration, comorbidities, elderly |
(Umpierrez & Korytkowski, 2016; French et al., 2019; Dhatariya et al., 2020; Kitabchi et al., 2004; Kitabchi et al., 2006; Kitabchi et al., 2001; Kitabchi et al., 2009; Rosager et al., 2023; Pasquel & Umpierrez, 2014) |
|
Severe Hypoglycemia |
Low blood glucose, neuroglycopenic symptoms |
Variable, can be fatal |
Insulin/oral agent overdose, missed meals |
(Umpierrez & Korytkowski, 2016; Virdi et al., 2023) |
Figure 1: Comparison of diabetes emergencies, features, mortality, and triggers.
Clinical Presentation and Outcomes
Management Principles
Risk Factors and Economic Impact
Special Considerations
Summary
Diabetes emergencies—DKA, HHS, and severe hypoglycemia—are serious, preventable complications. Early recognition, rapid management, and prevention strategies are essential to reduce morbidity, mortality, and healthcare costs (Umpierrez & Korytkowski, 2016; French et al., 2019; Dhatariya et al., 2020; Kitabchi et al., 2004; Haile & Fenta, 2025; Kitabchi et al., 2006; Kitabchi et al., 2001; Kitabchi et al., 2009; Rosager et al., 2023; Everett et al., 2023; Almutairi et al., 2025; Pasquel & Umpierrez, 2014; Virdi et al., 2023; Yousif et al., 2024).
These papers were sourced and synthesized using Consensus, an AI-powered search engine for research. Try it at https://consensus.app
References
Umpierrez, G., & Korytkowski, M. (2016). Diabetic emergencies — ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nature Reviews Endocrinology, 12, 222-232. https://doi.org/10.1038/nrendo.2016.15
French, E., Donihi, A., & Korytkowski, M. (2019). Diabetic ketoacidosis and hyperosmolar hyperglycemic syndrome: review of acute decompensated diabetes in adult patients. BMJ, 365. https://doi.org/10.1136/bmj.l1114
Pasquel, F., Tsegka, K., Wang, H., Cardona, S., Galindo, R., Fayfman, M., Davis, G., Vellanki, P., Migdal, A., Gujral, U., Narayan, K., & Umpierrez, G. (2019). Clinical Outcomes in Patients With Isolated or Combined Diabetic Ketoacidosis and Hyperosmolar Hyperglycemic State: A Retrospective, Hospital-Based Cohort Study. Diabetes Care, 43, 349 - 357. https://doi.org/10.2337/dc19-1168
Dhatariya, K., Glaser, N., Codner, E., & Umpierrez, G. (2020). Diabetic ketoacidosis. Nature Reviews Disease Primers, 6, 1-20. https://doi.org/10.1038/s41572-020-0165-1
Kitabchi, A., Umpierrez, G., Murphy, M., Barrett, E., Kreisberg, R., Malone, J., & Wall, B. (2004). Hyperglycemic crises in diabetes. Diabetes care, 27 Suppl 1, S94-102. https://doi.org/10.2337/diacare.27.2007.s94
Barski, L., Golbets, E., Jotkowitz, A., & Schwarzfuchs, D. (2023). Management of diabetic ketoacidosis. European journal of internal medicine. https://doi.org/10.1016/j.ejim.2023.07.005
Haile, H., & Fenta, T. (2025). Magnitude, risk factors and economic impacts of diabetic emergencies in developing countries: A systematic review. PLOS ONE, 20. https://doi.org/10.1371/journal.pone.0317653
Kitabchi, A., Umpierrez, G., Murphy, M., & Kreisberg, R. (2006). Hyperglycemic Crises in Adult Patients With Diabetes. Diabetes Care, 29, 2739 - 2748. https://doi.org/10.2337/dc06-9916
Long, B., Lentz, S., Koyfman, A., & Gottlieb, M. (2021). Euglycemic diabetic ketoacidosis: Etiologies, evaluation, and management. The American journal of emergency medicine, 44, 157-160. https://doi.org/10.1016/j.ajem.2021.02.015
Kitabchi, A., Umpierrez, G., Murphy, M., Barrett, E., Kreisberg, R., Malone, J., & Wall, B. (2001). Management of hyperglycemic crises in patients with diabetes. Diabetes care, 24 1, 131-53. https://doi.org/10.2337/diacare.24.1.131
Kitabchi, A., Umpierrez, G., Miles, J., & Fisher, J. (2009). Hyperglycemic Crises in Adult Patients With Diabetes. Diabetes Care, 32, 1335 - 1343. https://doi.org/10.2337/dc09-9032
Rosager, E., Heltø, A., Maule, C., Friis-Hansen, L., Petersen, J., Nielsen, F., Haugaard, S., & Gregersen, R. (2023). Incidence and Characteristics of the Hyperosmolar Hyperglycemic State: A Danish Cohort Study. Diabetes care. https://doi.org/10.2337/dc23-0988
Everett, E., Copeland, T., Wisk, L., & Chao, L. (2023). Risk Factors for Hyperosmolar Hyperglycemic State in Pediatric Type 2 Diabetes. Pediatric Diabetes, 2023. https://doi.org/10.1155/2023/1318136
Almutairi, T., Dargham, S., Jayyousi, A., Suwaidi, J., & Khalil, A. (2025). Diabetic ketoacidosis and hyperglycemic hyperosmolar state are associated with higher in-hospital mortality and morbidity in diabetes patients hospitalized with ST-elevation myocardial infarction, but not within 30 days of readmission. PLOS ONE, 20. https://doi.org/10.1371/journal.pone.0318774
Pasquel, F., & Umpierrez, G. (2014). Hyperosmolar Hyperglycemic State: A Historic Review of the Clinical Presentation, Diagnosis, and Treatment. Diabetes Care, 37, 3124 - 3131. https://doi.org/10.2337/dc14-0984
Virdi, N., Poon, Y., Abaniel, R., & Bergenstal, R. (2023). Prevalence, Cost, and Burden of Diabetic Ketoacidosis. Diabetes technology & therapeutics, 25 S3, S75-S84. https://doi.org/10.1089/dia.2023.0149
Yousif, M., Dolak, K., Adhikari, S., & White, P. (2024). Risk factors for adverse outcomes in children with diabetic ketoacidosis. The Journal of clinical endocrinology and metabolism. https://doi.org/10.1210/clinem/dgae500